
Variables
This chapter covers the following topics:

Defining Your Own Variables

Arithmetic Calculations

Text Functions

Decimal Numbers

The Variable Character

System Variables

1

VariablesVariables

Defining Your Own Variables
If a long word or phrase occurs frequently in the source text, you can assign it to a variable. Subsequently
it is only necessary to specify the variable.

.SV - Set Variable

.SV variable-name =value

You can define a variable and then assign a value to it. For example:

.SV name=Smith

Each variable must be identified by a unique name. The variable name (the parameter before the equal
sign) can only contain letters or digits. It must contain at least one character and can be up to 100
characters long. The variable name must not start with the variable character (see below) and must not
contain blanks. No distinction is made between upper-case and lower-case.

The parameter after the equal sign can either be text (can consist of several words and may contain blanks)
or an arithmetic calculation (see Arithmetic Calculations with .SV).

 Maximum value for
text

Maximum value for arithmetic
calculation

Parameter after equal
sign

249 characters 100 characters

Intermediate result CSIZE minus 10 (in KB) 31 digits

Final result CSIZE minus 10 (in KB) 29 digits

Notes:

1. Starting with Con-form version 3.4.1, the maximum value for text may exceed 100 characters. In
previous versions, this was restricted to 100 characters.

2. CSIZE is the size of Con-nect buffer area. The administrator defines it in the Natural parameter
module NATPARM. The maximum CSIZE value can be 512 KB. Thus, the maximum that can be
used for an intermediate and final text result is 502 KB.

No distinction is made between variables which hold text and variables which hold numeric values. A
variable can even hold text at one instant and a numeric value at a later instant. The type of value which a
variable currently holds is determined by the most recent .SV instruction which assigned a value to that
variable.

2

Defining Your Own VariablesVariables

Using the Variable in the Document Text

After you have defined a variable with the .SV instruction, you can include it in the document text. It must
be preceded by the variable character. Initially, the variable character is the ampersand (&). For example:

&variable

When you format the document, the variable is replaced with the defined value.

Substitution (see the .SU instruction) is automatically switched on by the .SV instruction. This means that
the text that is preceded by the variable character is interpreted as a variable and replaced accordingly.

Associating Text Strings and Variables

You can associate any number of text strings and variables.

To output a text string or another variable after the variable (without a blank in between), you must
specify a period (.) directly after the first variable. The period is not required after a text string which is
followed by a variable. For example:

.SV var1=butter

.SV var2=fly

.SV dollars=200
&var1.&var2
&var1.milk
dragon&var2
$&dollars

The above instructions cause the following formatted output:

butterfly
buttermilk
dragonfly
$200

Using Compound Names

A variable can be formed by resolving a compound name.

A compound name contains two or more simple variables and is resolved by substituting the value of each
variable, working from right to left. For example:

.SV V1wakeup=Good Morning

.SV V2night=wakeup

.SV V3=night
&V1&V2&V3

The above instructions cause the following formatted output:

Good Morning

The variable in the above example is resolved from right to left in successive steps:

&V1&V2&V3
&V1&V2night
V1wakeup
Good Morning

3

VariablesUsing the Variable in the Document Text

Punctuation Mark After a Variable

To output a punctuation mark after the variable, you must enter a period (.) followed by the required
punctuation mark. For example, to end a sentence with a period, you must repeat the period:

.SV text=In this case, you must repeat the period
&text..
.SV more=This is followed by a semicolon
&more.;

The above instructions cause the following formatted output:

In this case, you must repeat the period.
This is followed by a semicolon;

Arithmetic Calculations with .SV

The parameter of the .SV instruction can also be a numeric value. You can specify an integer, a fractional
number with a decimal sign, or a number with a thousands separator character (see the .OP TRI
instruction).

You can use the following arithmetic operators:

+ Addition

- Subtraction

* Multiplication

/ Division

In the .SV instruction, a calculation is evaluated by applying the operators from left to right. All operators
have equal priority. Parentheses are not evaluated.

Tip:
It is recommended that you use the .CV instruction for arithmetic operations since it evaluates
parentheses. See .CV - Compute Variable.

You can specify fractional numbers in the .SV instruction. However, if you do not specify the number of
characters which are to be output after the decimal character (see the .OP DAS instruction), the result is
rounded to the nearest integer. For example:

.SV number1=2.5*3+2
The result of number1 is &number1
.OP DAS=2
.SV number2=2.5*3+2
The result of number2 is &number2

The above instructions cause the following formatted output:

The result of number1 is 9
The result of number2 is 9.50

Caution:
You must specify the .OP DAS instruction before the .SV instruction. Otherwise, the result is not rounded
as desired.

4

Punctuation Mark After a VariableVariables

You can modify the value of a parameter. For example:

.SV counter=11

.SV counter=&counter+1
&counter

The above instructions cause the following formatted output:

12

Initially, the result of a division is rounded to the nearest integer. However, when you specify the number
of characters which are to be output after the decimal character (see the .OP DAS instruction), the result is
rounded accordingly. For example:

.OP DAS=2

.SV number=2/3
&number

The above instructions cause the following formatted output:

0.67

5

VariablesArithmetic Calculations with .SV

Arithmetic Calculations
It is recommended that you use the .CV instruction for arithmetic operations since it evaluates parentheses
(in contrast to the .SV instruction).

.CV - Compute Variable

.CV variable-name =arithmetic-expression

You can define a variable and then compute its value using an arithmetic expression. An arithmetic
expression consists of one or more constants, variables or system variables.

A constant is an integer, a fractional number with a decimal sign, or a number with a thousands separator
character (see the .OP TRI instruction). Arithmetic operators (see below) must not be used as thousands
separator characters. The number of digits in the constant must not exceed 29. The number of digits after
the decimal sign must not exceed 7. For example:

.OP TRI=’,’

.CV const1=15

.CV const2=0.123

.CV const3=1234567890123456789012.1234567

.CV const4=1,999

A variable used in an arithmetic expression must have a numeric value. This variable must have been
defined in a previous .SV or .CV instruction.

A system variable can be used in an arithmetic expression if it has a numeric value.

You can use the following arithmetic operators:

() Parentheses

* Multiplication

/ Division

+ Addition

- Subtraction

Parentheses are evaluated. The arithmetic operation is processed in the following order:

1. Parentheses

2. Multiplication and division (left to right)

3. Addition and subtraction (left to right)

When the divisor is 0, the result of a division operation is 0.

6

Arithmetic CalculationsVariables

When the result of a .CV calculation leads to an overflow, the variable is set to 5 asterisks (*****). For
example:

.CV var1=-25000
&var1
.CV var2=15-5+4/2-10
&var2
.CV var3=(1+2) * 3/ (1+8)
&var3
.CV var4=&var1+100000
&var4
.CV var5= 1000000000000000 * 1000000000000000
.IF &var5 = *****
.TH
Your result is too big
.EL
&var5
.EI

The above instructions cause the following formatted output:

-25000
2
1
75000
Your result is too big

7

Variables.CV - Compute Variable

Precision of Results for Arithmetic Operations

The following table gives an overview of the precision rules that are used in an arithmetic calculation with
the .CV instruction.

Operation
Digits before
decimal
character

Digits after decimal character
(intermediate result)

Digits after
decimal character
(final result)

Addition/Subtraction
Fi + 1 or Si + 1
(whichever is
greater)

Fd or Sd (whichever is greater,
maximum 7)

DAS and RND are
applied to the last
intermediate result.

Multiplication Fi + Si + 2 Fd + Sd (maximum 7)

Division Fi + Sd

If .OP REM=OFF: Fd or value of DAS
option (whichever is greater, maximum
7). In addition, if .OP RND=ON, this
number of digits is internally increased
(+1).

If .OP REM=ON: value of DAS option.
This value is also used for remainder.

The following abbreviations are used in the above table:

F First operand.

S Second operand.

i Digits before decimal character.

d Digits after decimal character.

The number of digits after the decimal character is handled separately for intermediate and final result.
Intermediate results are arithmetic operations before rounding and applying of the option DAS. The final
result is last intermediate result after rounding and applying of the option DAS.

In the final result (formatted output), the digits after the decimal character are defined by the option DAS.

When the option RND is switched ON, rounding is performed. When the option RND is switched OFF,
the last digits are truncated.

When the option REM is switched ON, the result of a division operation is not rounded (regardless of the
setting defined for .OP RND).

Example:

.OP DAS=0

.OP RND=ON

.CV VAR=(3+5.25) / 1.5 - 4

8

Precision of Results for Arithmetic OperationsVariables

The final result of the above operation is 2, as indicated in the following table:

 Operation Result

Intermediate
operation 1

3+5.25 8.25

Intermediate
operation 2

8.25/1.5
5.500 (since .OP RND=ON, the number of digits after decimal
character is internally increased (+1)).

Intermediate
operation 3

5.500-4 1.500

Final operation
Apply DAS and
RND

2

9

VariablesPrecision of Results for Arithmetic Operations

.OP RND - Round Result of .CV

.OP RND=ON

.OP RND=OFF

This instruction can only be used with the .CV instruction.

Initially, the result of the .CV instruction is rounded to the nearest integer. This corresponds to the
following instruction:

.OP RND=ON

For example:

.OP DAS=3

.OP RND=ON

.CV var1=0 + 0.2555
&var1
.OP RND=OFF
.CV var2=0 + 0.2555
&var2

The above instructions cause the following formatted output:

0.256
0.255

10

.OP RND - Round Result of .CVVariables

.OP REM - Remainder of Division with .CV

.OP REM=ON

.OP REM=OFF

This instruction can only be used with the .CV instruction.

Initially, this option is switched off. This corresponds to the following instruction:

.OP REM=OFF

If the remainder of a division operation is to be moved to the modifiable system variable $RR, you must
specify the following instruction:

.OP REM=ON

The initial value of $RR is 0 (zero).

The result of a division operation is not rounded (regardless of the setting defined for .OP RND). The
format of the remainder depends on the options defined with the instructions .OP DAS and .OP TRI.

For example:

.OP DAS=2

.OP REM=ON
&$RR
.CV number=2/3
&number
&$RR

The above instructions cause the following formatted output:

0
0.66
0.02

11

Variables.OP REM - Remainder of Division with .CV

Text Functions
You can use text functions in conjunction with the .SV or .CV instruction. You must always specify an
apostrophe (’) after the function code.

Text functions can also be used with the instructions .IF and .WH.

The following function codes are available:

Code Explanation Example

E

Check whether the specified variable exists. The
parameter is the name of a variable. If the variable
exists, the value 1 is returned. If the variable does not
exist, the value 0 is returned.

.SV var=Smith

.SV test=var
If variable "var" exists,
type 1,
else type 0:
&E’&test

H

Convert text string to hexadecimal value. The parameter
can be an arbitrary text string. Each character in the
parameter string is converted to the corresponding
EBCDIC hexadecimal value.

.SV var=H’123
The hexadecimal value of 123
is &var.
.SV name=Smith
The hexadecimal value of Smith
is &H’&name.

I
Invert rendition of text string. The parameter is an
arbitrary text string. The direction in which the contents
of the variable is interpreted is altered.

.SV abc=xyz

.SV def=I’&abc
The inverted value is
&def (zyx).

L

Convert text string to lower-case. The parameter can be
an arbitrary text string. Each upper-case letter in the
parameter string is replaced by the lower-case
equivalent. Other characters are left unchanged.

.SV var=CATS
Don’t forget to feed your
&L’&var tonight.

N
Determine length of text string. The parameter can be an
arbitrary text string. The number of characters in the
parameter string is returned.

.SV date=3.11.00
The length of this string
is &N’&date

R
Convert parameter to a Roman number. The parameter is
an unsigned decimal number. The number is returned as
the corresponding Roman number in upper-case format.

.SV year=R’2000
&year will be a wonderful year.
.SV vol=8
Give me volume &R’&vol of the
encyclopaedia.

U

Convert text string to upper-case. The parameter is an
arbitrary text string. Each lower-case letter in the
parameter string is replaced by the upper-case
equivalent. Other characters are left unchanged.

.SV var=Smith
Please call Mr. &U’&var
before you go home.

X

Convert hexadecimal value to a character. The parameter
must be a hexadecimal value. The hexadecimal value is
converted to its one-character long equivalent. You can
specify only one hexadecimal value as the parameter.

.SV hex=C5
The hexadecimal value C5
denotes &X’&hex
.SV hexa=X’C5
The hexadecimal value C5
denotes &hexa

12

Text FunctionsVariables

Specifying the Text Function as a Parameter

You can specify a text function as a parameter of the .SV or .CV instruction. To do so, you must specify
the required function code followed by the parameter. You can then include the variable in the running
text; it must be preceded by the variable character. Initially, the variable character is the ampersand (&).
For example:

.SV var=H’123
The hexadecimal value of 123 is &var

The above instructions cause the following formatted output:

The hexadecimal value of 123 is F1F2F3

Specifying the Text Function in the Running Text

When you use the text function in the running text, the function code must be preceded by the variable
character. Furthermore, you must specify a defined variable after the text function. The variable must also
be preceded by the variable character. Initially, the variable character is the ampersand (&). For example:

.SV var=123
The hexadecimal value of 123 is &H’&var

The above instructions cause the following formatted output:

The hexadecimal value of 123 is F1F2F3

13

VariablesSpecifying the Text Function as a Parameter

Decimal Numbers
You can use the following options to specify how decimal numbers are to be output when arithmetic
calculations are included in variables.

.OP DAS - Number of Characters After the Decimal Character

.OP DAS= number

Initially, the result of an arithmetic calculation is rounded to the nearest integer. To avoid this, you must
specify the number of characters which are to be output after the decimal character. The decimal character
is defined using the .OP DEC instruction.

For example, if 2 characters are to be output after the decimal character, you must specify:

.OP DAS=2

You can specify a maximum of 7 characters after the decimal character.

The decimal character is not inserted automatically when specifying the .SV or .CV instruction as in the
following example:

.OP DAS=2

.SV number=1
&number

The above instructions cause the following formatted output:

1

To output the above variable with a decimal character, you should perform the following additional
calculation step:

.OP DAS=2

.SV number=1+0
&number

The above instructions cause the following formatted output:

1.00

14

Decimal NumbersVariables

.OP DEC - A Different Decimal Character

.OP DEC=character

Initially, the Natural decimal character is used. By default, this is the period (.). You can define a different
decimal character. For example, to define the comma as the new decimal character, you must specify:

.OP DEC=’,’

Since the comma is used by certain Con-form instructions to separate parameters, it is important that you
enclose it in apostrophes as shown above. If you want to define, for example, the slash (/), you need not
use the apostrophes.

.OP TRI - Thousands Separator Character

.OP TRI= character

.OP TRI=ON

.OP TRI=OFF

Initially, a thousands separator character is not defined.

You can specify the character that is to be used as the thousands separator character. For example, to
define the comma as the thousands separator character, you must specify:

.OP TRI=’,’

Since the comma is used by certain Con-form instructions to separate parameters, it is important that you
enclose it in apostrophes as shown above. If you want to define, for example, the slash (/), you need not
use the apostrophes.

The thousands separator character is inserted in the formatted output as the result of an arithmetic
calculation. It is not inserted when specifying the .SV or .CV instruction as in the following example:

.OP TRI=’,’

.SV number=2000
&number

15

Variables.OP DEC - A Different Decimal Character

The above instructions cause the following formatted output:

2000

To output the above variable with a thousands separator character, you should perform the following
additional calculation step:

.OP TRI=’,’

.SV number=2000+0
&number

The above instructions cause the following formatted output:

2,000

If you no longer want to use the thousands separator character, you can deactivate it using the following
instruction:

.OP TRI=OFF

If you want to reuse the previously defined, deactivated thousands separator character, you can activate it
using the following instruction:

.OP TRI=ON

If you specify .OP TRI=ON and a thousands separator character has not yet been defined, the comma is
used by default.

16

.OP TRI - Thousands Separator CharacterVariables

The Variable Character
All variables in the document text (i.e. the variables you defined using the .SV or .CV instruction as well
as the system variables) must be preceded by the variable character. If required, you can define another
variable character or switch the recognition of the variable character off.

.OP VSG - A Different Variable Character

.OP VSG=character

This instruction defines the character that is used to distinguish text and variables.

Initially, the variable character is the ampersand (&). However, you can define a different character. For
example, to define the paragraph sign (§) as the variable character, you must specify:

.OP VSG=§

It is not possible to use the Dollar sign ($) as the variable character for system variables. Thus, it is not
possible to specify, for example, $$PL. However, it is possible to define the following:

.SV PL=&$PL

.OP VSG=$
$PL

.SU - Substitution

.SU ON

.SU OFF

When substitution is switched on, each string in the source text which is preceded by the variable
character is interpreted as a variable and replaced accordingly.

Initially, substitution is switched off. However, it is automatically switched on by the .SV or .CV
instruction. This corresponds to the following:

.SU ON

Substitution is also switched on by macro calls with parameters. It is not switched on by macro calls
without parameters.

You can switch the recognition of the variable character off. This is necessary if the source text contains
strings that include the variable character and you do not want them to be interpreted as variables.

To switch substitution off and thus cancel the effect of the variable character, you must specify:

.SU OFF

17

VariablesThe Variable Character

System Variables
In addition to the variables you define yourself (using the .SV or .CV instruction), you can also use system
variables in your source text. System variables can contain values such as the current date and time, or the
current text margins.

When you specify a system variable, it must be preceded by the variable character. Initially, the variable
character is the ampersand (&). For example, to use the system variable $DT, you must specify it as
follows:

&$DT

In addition to inserting a variable in the running text, you can also use it with the instructions .IF and .WH.

Fixed System Variables

Fixed system variables cannot be modified. Con-form automatically replaces the variables below with
their actual values when the document is formatted.

Variable Explanation Value

$CN Century (the first two digits of the year). 19 or 20

$DA Day. 1...31

$DD Day name in Danish. Mandag...Søndag

$DF Day name in French. Lundi...Dimanche

$DG Day name in German. Montag...Sonntag

$DN Day name in English. Monday...Sunday

$DT
Date. For the months 1 through 9 a blank is inserted before the number
of the month (for example, 9. 1.93).

dd.mm.yy

$DY Julian date. 1...366

$HO Hour. 00...23

$MD Month name in Danish. Januar...December

$MF Month name in French. Janvier...Décembre

$MG Month name in German. Januar...Dezember

$MI Minute. 00...59

$MN Month name in English. January...December

$MO Month number. 1...12

$SE Second. 00...59

$YE Year. 00...99

The following example illustrates how to use fixed system variables:

18

System VariablesVariables

The current date is: &$DN., &$MN &$DA., &$CN.&$YE..

The above instructions cause the following formatted output:

The current date is: Wednesday, October 25, 2000.

Modifiable System Variables

The following variables can be used in complex formatting situations. Initially, they are set to default
values. However, when one of the instructions shown in the right column is issued, the value of the
variable is modified.

Variable Explanation
Modified
by

$BM Bottom margin. .BM

$CH Chapter number. .CH, .SC

$FM Footer margin. .FM

$FN
Footnote counter. The variable $FN is incremented every time it is referenced.
It is used for consecutive numbering of footnotes.

$FS Footer space. .FS

$HM Header margin. .HM

$HS Header space. .HS

$IN Indentation.
.LM, .OF,
.TI, .CS

$IX Last index entry. .IX

$LC Remaining lines on page. .SV, .LS

$LL Line length. .LL, .CS

$PL Page length. .PL, .LS

$PN

Current page number. When the variable $PN is replaced in your text, Arabic
page numbering is used. With the .SV or .CV instruction and in the top and
bottom titles, the page-number character can be used instead of $PN. In this
case, the page number is always output according to your specifications (either
Arabic or Roman numbers). Initially, the page-number character is the hash
(#).

.NP, .PN

$RM Right margin. .RM, .CS

$RR Remainder of division when .OP REM=ON. .CV

$TM Top margin. .TM

The above modifiable system variables return values which have been internally saved by Con-form.
However, it is not guaranteed that the system variables always produce the same results in different
environments and with different versions of Con-form.

19

VariablesModifiable System Variables

The following example illustrates how to use modifiable system variables. It also introduces the .IF
instruction.

When less than 5 lines are available on the current page, the box is output on
the next page. The current page number is output in the box.
.SL 1
.IF &$LC < 5;.NP
.BX 10,50
.LM 10;.RM 49
.IL 1;.CE 1
This box is printed on Page &$PN..
.IL 1;.BX OFF

The above instructions cause the following formatted output:

When less than 5 lines are available on the current page, the box is output on
the next page. The current page number is output in the box.

 +---------------------------------------+
 ! !
 ! This box is printed on Page 1. !
 ! !
 +---------------------------------------+

20

Modifiable System VariablesVariables

	Variables
	Defining Your Own Variables
	.SV - Set Variable
	Using the Variable in the Document Text
	Associating Text Strings and Variables
	Using Compound Names
	Punctuation Mark After a Variable
	Arithmetic Calculations with .SV

	Arithmetic Calculations
	.CV - Compute Variable
	Precision of Results for Arithmetic Operations
	.OP RND - Round Result of .CV
	.OP REM - Remainder of Division with .CV

	Text Functions
	Specifying the Text Function as a Parameter
	Specifying the Text Function in the Running Text

	Decimal Numbers
	.OP DAS - Number of Characters After the Decimal Character
	.OP DEC - A Different Decimal Character
	.OP TRI - Thousands Separator Character

	The Variable Character
	.OP VSG - A Different Variable Character
	.SU - Substitution

	System Variables
	Fixed System Variables
	Modifiable System Variables

